Find the position function of a particle moving along a coordinate line that satisfies the given condition v(t) = 6t2 - 4t + 5,s(1) = - 4 s(t) =

Respuesta :

Answer:

[tex]s(t) = 2t^{3} - 2t^{2} + 5t - 9[/tex]

Step-by-step explanation:

The position is the integrative of the velocity.

We have that:

[tex]v(t) = 6t^{2} - 4t + 5[/tex]

So

[tex]s(t) = \int {v(t)} \, dt[/tex]

[tex]s(t) = \int {(6t^{2} - 4t + 5)} \, dt[/tex]

[tex]s(t) = 2t^{3} - 2t^{2} + 5t + K[/tex]

In which k is the constant of integration, which we use the initial condition to find.

s(1) = -4. So

[tex]-4 = 2*(1)^{3} - 2*(1)^{2} + 5(1) + K[/tex]

[tex]K = -9[/tex]

So

[tex]s(t) = 2t^{3} - 2t^{2} + 5t - 9[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE