Correct the following errors by circling the error, describing what is wrong, entering what should be there instead and entering the correct answer 3^4 x 2^3=6^4+3 ​

Respuesta :

Answer:

the correct expression would be: [tex]\left(3^4\right)\left(2^3\right)=6^4-648[/tex]

Step-by-step explanation:

As the given expression is

[tex]\left(3^4\right)\left(2^3\right)[/tex] = [tex]6^4+3[/tex]

The right hand side of the equation is not equal to left side as

[tex]L.H.S =\left(3^4\right)\left(2^3\right)=648[/tex]

[tex]R.H.S =6^4+3=1299[/tex]

So, L.H.S ≠ R.H.S

There is an error in R.H.S. if we correct and write the R.H.S as [tex]6^4-648[/tex] instead of [tex]6^4+3[/tex], then the L.H.S = R.H.S

As

[tex]L.H.S =\left(3^4\right)\left(2^3\right)[/tex]

[tex]L.H.S=81\cdot \:8[/tex]

[tex]L.H.S=648[/tex]

and

[tex]R.H.S=6^4-648[/tex]

[tex]R.H.S=1296-648[/tex]

[tex]R.H.S=648[/tex]

Therefore, the correct expression would be: [tex]\left(3^4\right)\left(2^3\right)=6^4-648[/tex]

Keywords: error, correction, equation

Learn more about error correction from brainly.com/question/4160754

#learnwithBrainly

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE