Answer:
the correct expression would be: [tex]\left(3^4\right)\left(2^3\right)=6^4-648[/tex]
Step-by-step explanation:
As the given expression is
[tex]\left(3^4\right)\left(2^3\right)[/tex] = [tex]6^4+3[/tex]
The right hand side of the equation is not equal to left side as
[tex]L.H.S =\left(3^4\right)\left(2^3\right)=648[/tex]
[tex]R.H.S =6^4+3=1299[/tex]
So, L.H.S ≠ R.H.S
There is an error in R.H.S. if we correct and write the R.H.S as [tex]6^4-648[/tex] instead of [tex]6^4+3[/tex], then the L.H.S = R.H.S
As
[tex]L.H.S =\left(3^4\right)\left(2^3\right)[/tex]
[tex]L.H.S=81\cdot \:8[/tex]
[tex]L.H.S=648[/tex]
and
[tex]R.H.S=6^4-648[/tex]
[tex]R.H.S=1296-648[/tex]
[tex]R.H.S=648[/tex]
Therefore, the correct expression would be: [tex]\left(3^4\right)\left(2^3\right)=6^4-648[/tex]
Keywords: error, correction, equation
Learn more about error correction from brainly.com/question/4160754
#learnwithBrainly