contestada

Fluorine-18 (18F) is a radioactive isotope use in a variety of medical imaging procedures including positron emission tomography (PET) scans.
Fluorine-18 decays by positron emission with a half-life of 1.83 hours.
(1) When 18F undergoes positron emission, the product nucleus is,
A) 18O B) 19Ne C) 14N D) 17F
(2) A typical dose of 18F used for a PET scan has an activity of 4.00 millicuries. How long will it take for 95% of the 18F to decay?
A) 1.74 hrs B) 5.49 min C) 8.13 minutes D) 7.91 hrs.

Respuesta :

Explanation:

(1)   When a proton is converted into neutron then the positron emission takes place as follows.

            [tex]^{1}_{1}p \rightarrow ^{1}_{0}n + ^{0}_{+1}e[/tex]

A positron is represented by the symbol [tex]^{0}_{+1}e[/tex]. Therefore, when a positron emission occurs then the resultant nuclei atomic number decreases by a unit mass.

General equation representing positron emission is as follows.

        [tex]^{M}_{Z}A \rightarrow ^{M}_{Z-1}B + ^{0}_{+1}e[/tex]

Hence, Fluorine-18 decays by positron emission as follows.

        [tex]^{18}_{9}F \rightarrow ^{18}_{8}O + ^{0}_{+1}e[/tex]

Therefore, when 18F undergoes positron emission, the product nucleus is,  [tex]^{18}O[/tex].

(2)   Expression for the half-life of a [tex]^{18}_{9}F[/tex] isotope is as follows.

             [tex]t_{\frac{1}{2}} = \frac{0.693}{\lambda}[/tex]

                 [tex]\lambda = \frac{0.693}{1.83 hr}[/tex]

Initial activity, ([tex][N]_{o}[/tex]) = 4.00 millicuries

Activity after 95% = [tex]4.00 - 4.00 \times \frac{95}{100}[/tex]

                              = 0.20 millicuries

              [tex]\lambda = \frac{2.303}{t} log \frac{[N]_{o}}{[N]_{t}}[/tex]

         [tex]\frac{0.693}{1.83 hr} = \frac{2.303}{t} log \frac{4.00}{0.20}[/tex]

                          t = 7.912 hrs

Thus, we can conclude that it will take 7.91 hrs for 95% of the 18F to decay.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE