Respuesta :
Triangle PDQ has:
Side "p" is opposite Angle P
Side "d" is opposite Angle D = 45º + 23º = 68º
Side "q" is opposite Angle Q
Use the Law of Cosines:
d² = p² + q² − 2 • p • q • cos(D)
d² = (4.24)² + (4.24)² − 2 • (4.24) • (4.24) • cos(68º)
d² = 2(4.24)² − 2(4.24)² • cos(68º)
d² = 2(4.24)² • [ 1 – cos(68º) ]
d = 4.74 ft
Side "p" is opposite Angle P
Side "d" is opposite Angle D = 45º + 23º = 68º
Side "q" is opposite Angle Q
Use the Law of Cosines:
d² = p² + q² − 2 • p • q • cos(D)
d² = (4.24)² + (4.24)² − 2 • (4.24) • (4.24) • cos(68º)
d² = 2(4.24)² − 2(4.24)² • cos(68º)
d² = 2(4.24)² • [ 1 – cos(68º) ]
d = 4.74 ft
The distance PQ is 4.74 feet.
Calculations and Parameters:
Triangle PDQ has:
- Side "p" is opposite Angle P
- Side "d" is opposite Angle D = 45º + 23º = 68º
- Side "q" is opposite Angle Q
If we use the Law of Cosines:
d² = p² + q² − 2 • p • q • cos(D)
d² = 2(4.24)² • [ 1 – cos(68º) ]
d = 4.74 ft
Read more about distances here:
https://brainly.com/question/17273444
#SPJ5