What is the general form of the equation of a circle with center at (a, b) and radius of length m?. A. x2 + y2 − 2ax − 2by + (a2 + b2 − m2) = 0 . . B.x2 + y2 + 2ax + 2by + (a2 + b2 − m2) = 0. C. x2 + y2 − 2ax − 2by + (a + b − m2) = 0. D. x2 + y2 + 2ax + 2by + a2 + b2 = -m2.
The generic equation of the circle is given by: [tex](x-xo) ^ 2 + (y-yo) ^ 2 = r ^ 2
[/tex] Where, r: radius of the circle (xo, yo): center of the circle. The center of the circle in this case is: [tex](xo, yo): (a, b)
[/tex] The radius of the circle is: [tex]r = m
[/tex] Substituting values we have: [tex](x-a) ^ 2 + (y-b) ^ 2 = m ^ 2
[/tex] Rewriting the equation we have: [tex]x ^ 2 - 2ax + a ^ 2 + y ^ 2 - 2by + b ^ 2 - m ^ 2 = 0
x ^ 2 + y ^ 2 - 2ax - 2by + a ^ 2 + b ^ 2 - m ^ 2 = 0[/tex] Answer: The general form of the equation of a circle with center at (a, b) and radius of length m is: [tex]x ^ 2 + y ^ 2 - 2ax - 2by + a ^ 2 + b ^ 2 - m ^ 2 = 0
[/tex] option A