Respuesta :

Answer:

f(-3)=6 is the greatest value in the range of [tex]f(x)=x^2-3[/tex] for the domain (-3,0,1,2)

Step-by-step explanation:

Given that the function f is defined for range by [tex]f(x)=x^2-3[/tex] for the domain (-3,0,1,2)

To find the greatest value in the range of [tex]f(x)=x^2-3[/tex] for the domain (-3,0,1,2):

[tex]f(x)=x^2-3[/tex] for the domain (-3,0,1,2)

That is put x=-3 in the given function [tex]f(x)=x^2-3[/tex] we get

[tex]f(-3)=(-3)^2-3[/tex]

[tex]=3^2-3[/tex]

[tex]=9-3[/tex]

[tex]=6[/tex]

Therefore f(-3)=6

put x=0 in the given function [tex]f(x)=x^2-3[/tex] we get

[tex]f(0)=(0)^2-3[/tex]

[tex]=0-3[/tex]

[tex]=-3[/tex]

Therefore f(0)=-3

put x=1 in the given function [tex]f(x)=x^2-3[/tex] we get

[tex]f(1)=(1)^2-3[/tex]

[tex]=1-3[/tex]

[tex]=-2[/tex]

Therefore f(1)=-2

put x=-3 in the given function [tex]f(x)=x^2-3[/tex] we get

[tex]f(2)=(2)^2-3[/tex]

[tex]=4-3[/tex]

[tex]=1[/tex]

Therefore f(2)=1

Comparing the values of f(-3)=6,f(0)=-3,f(1)=-2,and f(2)=1 to find the greatest value in the range of f(x) = x^2 - 3 for the domain (-3,0,1,2) we get

Therefore f(-3)=6 is the greatest value in the range of [tex]f(x)=x^2-3[/tex] for the domain (-3,0,1,2)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE