Respuesta :

Answer:

(- 1, 2) and (- [tex]\frac{1}{2}[/tex], [tex]\frac{1}{2}[/tex])

Step-by-step explanation:

Given the 2 equations

y = 2x² → (1)

y = - 3x - 1 → (2)

Substitute y = 2x² into (2)

2x² = - 3x - 1 ( add 3x and 1 to both sides )

2x² + 3x + 1 = 0 ← in standard form

(2x + 1)(x + 1) = 0 ← in factored form

Equate each factor to zero and solve for x

2x + 1 = 0 ⇒ 2x = - 1 ⇒ x = - [tex]\frac{1}{2}[/tex]

x + 1 = 0 ⇒ x = - 1

Substitute these values into (2) for corresponding values of y

x = - 1 → y = - 3(- 1) - 1 = 3 - 1 = 2 ⇒ (- 1, 2 )

x = - [tex]\frac{1}{2}[/tex] → y = [tex]\frac{3}{2}[/tex] - 1 = [tex]\frac{1}{2}[/tex] ⇒ (- [tex]\frac{1}{2}[/tex], [tex]\frac{1}{2}[/tex] )

We are given a system of equations.

  • Equaling the values of y, we find the values of x, solving a quadratic equation
  • Replacing the values of x into one of the equations, it is possible to find the respective value of y.

Doing this, we get that the solutions of the system are: [tex](-\frac{1}{2},\frac{1}{2}), (-1,2)[/tex]

Solving a quadratic equation:

Given a second order polynomial expressed by the following equation:

[tex]ax^{2} + bx + c, a\neq0[/tex].

This polynomial has roots [tex]x_{1}, x_{2}[/tex] such that [tex]ax^{2} + bx + c = a(x - x_{1})*(x - x_{2})[/tex], given by the following formulas:

[tex]x_{1} = \frac{-b + \sqrt{\Delta}}{2*a}[/tex]

[tex]x_{2} = \frac{-b - \sqrt{\Delta}}{2*a}[/tex]

[tex]\Delta = b^{2} - 4ac[/tex]

y = 2x³

y = –3x −1

Equaling them, we get:

[tex]2x^2 = -3x - 1[/tex]

[tex]2x^2 + 3x + 1 = 0[/tex]

Which is a quadratic equation with [tex]a = 2, b = 3, c = 1[/tex]

We solve it to find the values of x.

[tex]\Delta = 3^{2} - 4(2)(1) = 9 - 8 = 1[/tex]

[tex]x_{1} = \frac{-3 + \sqrt{1}}{2*(2)} = -\frac{2}{4} = -\frac{1}{2}[/tex]

[tex]x_{2} = \frac{-3 - \sqrt{1}}{2*2} = -1[/tex]

Solutions of y:

For x = -1/2:

[tex]y = 2(-\frac{1}{2})^2 = 2(\frac{1}{4}) = \frac{1}{2}[/tex]

Thus, one of the solutions is: [tex](-\frac{1}{2},\frac{1}{2})[/tex]

For x = -1:

[tex]y = 2(-1)^2 = 2[/tex]

Thus, the other solution is: (-1,2).

Then, the two solutions are: [tex](-\frac{1}{2},\frac{1}{2}), (-1,2)[/tex]

A similar question is given at https://brainly.com/question/12640928

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE