Respuesta :

Answer:

x= [tex]-2 \pm \sqrt{13}[/tex]

Step-by-step explanation:

Given: [tex]3x^{2} -12x+27= 0[/tex]

This is a quadratic equation.

[tex]3x^{2} -12x+27= 0[/tex]

Taking common 3 from the equation given

⇒ [tex]3(x^{2} -4x+9)=0[/tex]

dividing both side by 3

⇒ [tex]x^{2} -4x+9=0[/tex]

By using different factor, we can observe this trinomial can not be factored.

∴ solving it by completing the square.

⇒ [tex]x^{2} -4x+9=0[/tex]

adding 9 on both side

⇒ [tex]x^{2} -4x= 9[/tex]

To get a perfect square number as coeffecient of x is 4, lets add both side by 4.

⇒[tex]x^{2} -4x+4= 13[/tex]

we know, [tex](x+2)^{2} = x^{2} +2\times x\times 2+2^{2}[/tex]

∴ [tex](x+2)^{2} =13[/tex]

Taking Square root on both side, remember; √a²= a

⇒ [tex](x+2)= \sqrt{13}[/tex]

opening parenthesis

⇒ [tex]x+2= \sqrt{13}[/tex]

subtracting both side by 2

∴ x= [tex]-2 \pm \sqrt{13}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE