Respuesta :
Answer:
the perimeter = [tex]9+\sqrt{2} +\sqrt{5} \ units[/tex]
Step-by-step explanation:
see the attached figure.
the perimeter of trapezoid JKLM = JK + KL + LM + MJ
The distance between two points (x₁ , y₁) and (x₂ , y₂)
= [tex]\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2 }[/tex]
Given the points L=(-7,4) , K=(-4,4) , L=(-2,3) and M=(-8,3)
JK = [tex]\sqrt{(-7-(-4))^2+(4-4)^2 }= 3[/tex]
KL = [tex]\sqrt{(-4-(-2))^2+(4-3)^2 }= \sqrt{5}[/tex]
LM = [tex]\sqrt{(-2-(-8))^2+(3-3)^2 }= 6 [/tex]
MJ = [tex]\sqrt{(-8-(-7))^2+(3-4)^2 }= \sqrt{2}[/tex]
So, JK + KL + LM + MJ = [tex]3+\sqrt{5} + 6 + \sqrt{2}[/tex]
So, the perimeter = [tex]9+\sqrt{2} +\sqrt{5} \ units[/tex]
