On a coordinate plane, trapezoid J K L M is shown. Point J is at (negative 7, 4), point K is at (negative 4, 4), point L is at (negative 2, 3), and point M is at (negative 8, 3). What is the perimeter of trapezoid JKLM? StartRoot 2 EndRoot + StartRoot 5 EndRoot units 2 + StartRoot 2 EndRoot + StartRoot 5 EndRoot units 9 + 2 StartRoot 2 EndRoot units 9 + StartRoot 2 EndRoot + StartRoot 5 EndRoot units

Respuesta :

Answer:

the perimeter = [tex]9+\sqrt{2} +\sqrt{5}  \ units[/tex]

Step-by-step explanation:

see the attached figure.

the perimeter of trapezoid JKLM = JK + KL + LM + MJ

The distance between two points (x₁ , y₁) and (x₂ , y₂)

= [tex]\sqrt{(x_{1}-x_{2})^2+(y_{1}-y_{2})^2 }[/tex]

Given the points L=(-7,4) , K=(-4,4) , L=(-2,3)  and M=(-8,3)

JK = [tex]\sqrt{(-7-(-4))^2+(4-4)^2 }= 3[/tex]

KL = [tex]\sqrt{(-4-(-2))^2+(4-3)^2 }= \sqrt{5}[/tex]

LM = [tex]\sqrt{(-2-(-8))^2+(3-3)^2 }= 6 [/tex]

MJ = [tex]\sqrt{(-8-(-7))^2+(3-4)^2 }= \sqrt{2}[/tex]

So, JK + KL + LM + MJ = [tex]3+\sqrt{5} + 6 + \sqrt{2}[/tex]

So, the perimeter = [tex]9+\sqrt{2} +\sqrt{5}  \ units[/tex]

Ver imagen Matheng

Answer:

D

Step-by-step explanation:

EDU 2020

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE