Respuesta :
[tex]15 \leq w \text { and } w \leq 19[/tex] are the range of values for the width W of the garden
Step-by-step explanation:
The perimeter of rectangle is given as:
P = 2 (l + w) = 2 l + 2 w
Given: The length of the garden is 14 feet
Also given is that the perimeter of the garden must be at least 58 feet and no more than 66 feet. So, this can be shown as below,
[tex]58 \leq P \leq 66[/tex]
[tex]58 \leq 21+2 w \leq 66[/tex]
As given, l = 14 feet, the above equation would be
[tex]58 \leq(2(14)+2 w) \leq 66[/tex]
[tex]58 \leq 28+2 w \leq 66[/tex]
[tex]58-28 \leq 2 w \leq 66-28[/tex]
[tex]30 \leq 2 w \leq 38[/tex]
[tex]30 \leq 2 \mathrm{w} \text { and } 2 \mathrm{w} \leq 38[/tex]
[tex]15 \leq \mathrm{w} \text { and } \mathrm{w} \leq 19[/tex]