Answer:
[tex]\$3217.59[/tex]
Step-by-step explanation:
We need to use the following formula:
[tex]FV=P[ \frac{(1+i)^{t} -1}{r}][/tex]
where
[tex]FV[/tex] is the future value
[tex]P[/tex] is the periodic payment
[tex]r[/tex] is the monthly interest rate in decimal form
[tex]t[/tex] is the number of months
In this problem we have
[tex]FV=\$450,000[/tex]
[tex]t=8\ years=96\ months[/tex]
[tex]r=9\%/12=0.75\%=0.75/100=0.0075[/tex]
substitute in the equation above
[tex]450,000=P[ \frac{(1+0.0075)^{96} -1}{0.0075}][/tex]
solve for P
[tex]450,000=P[ \frac{(1.0075)^{96} -1}{0.0075}][/tex]
[tex]P=450,000/[ \frac{(1.0075)^{96} -1}{0.0075}][/tex]
[tex]P=\$3217.59[/tex]