Answer:
46 cm²
Step-by-step explanation:
Given: ANB is a straight line
AN= 9 cm
NB= 5 cm
Are of rectangle( ANCD)= 36 cm²
Now finding the length of rectangle ANCD.
Lets assume the length of rectangle be "l"
Area of rectangle= [tex]width\times length[/tex]
⇒[tex]36= 9cm\times l[/tex]
dividing both side by 9 cm.
∴ [tex]l= \frac{36}{9} = 4\ cm[/tex]
Hence, NC= 4 cm
Next, finding the area of triangle ΔNBC
Area of triangle= [tex]\frac{1}{2} \times (base\times height)[/tex]
⇒ Δ NBC= [tex]\frac{1}{2} \times 5\times 4[/tex]
∴Δ NBC= 10 cm²
We know, the area of ANCD= 36 cm²
∴ Area of ABCD= Area of rectangle+area of triangle
⇒Area of ABCD= 36+10
∴ Area of ABCD= 46 cm²