Respuesta :

Answer:

Therefore the solutions are

[tex]x=0\\and\\ y =5\\\\Or\\\\x=-4\\and\\y=-3[/tex]

Step-by-step explanation:

Given:

[tex]x^{2} + y^{2} =25[/tex] .........( 1 )

[tex]y-2x = 5\\y=2x+5[/tex]     ................( 2 )

To Find:

x = ?

y = ?

Solution:

Substituting ' y ' in Equation  1 we get

[tex]x^{2}+(2x+5)^{2} =25[/tex]

Using identity (A+B)²=A²+2AB+B² we get

[tex]x^{2}+4x^{2}+20x+25=25\\\\5x^{2}+20x=0\\5x(x+4)=0\\5x=0\ or\ x+4=0\\x=0\ or\ x= -4[/tex]

Now Substitute x =0 in equation 2 we get

[tex]y=2\times 0+5=5[/tex]

Or

Now Substitute x =-4 in equation 2 we get

[tex]y=2\times -4+5=-3[/tex]

Therefore the solutions are

[tex]x=0\\and\\ y =5\\\\Or\\\\x=-4\\and\\y=-3[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE