Respuesta :

Answer:

tan(Q) is Option C  :  1

Step-by-step explanation:

Given:

[tex]\angle R = 90^0[/tex]

[tex]\angle OPQ = 135^0[/tex]

To Find:

tan(Q)

Solution:

Step 1: Finding the angle QPR

We know that the [tex]\angle OPQ[/tex] and [tex]\angle QPR[/tex]   are  supplementary angles. Then the sum of [tex]\angle OPQ[/tex] and [tex]\angle QPR[/tex] must be equal to 180 degrees

So

[tex]\angle OPQ +\angle QPR = 180^0[/tex]

From the figure

[tex]135^0 +\angle QPR = 180^0[/tex]

[tex]\angle QPR = 180^0 - 135^0[/tex]

[tex]\angle QPR = 45^0[/tex]

Step 2: Finding the angle PQR

Now we also know that The "Triangle Sum Theorem states" that the three interior angles of any triangle add up to 180 degrees.

According to this theorem , In the figure,

the sum of all  the interior angles in the triangle PQR

[tex]\angle P +\angle Q +\angle R = 180^0[/tex]

Substituting the known values

[tex]45^0 +\angle Q +90^0 = 180^0[/tex]

[tex]\angle Q +135^0 = 180^0[/tex]

[tex]\angle Q = 180^0 - 135^0[/tex]

[tex]\angle Q = 45^0[/tex]

Step 3: Finding the tan(Q)

We now Know that [tex]\angle Q = 45^0[/tex]

[tex]tan(Q) = tan(45^0) = 1[/tex]

Ver imagen nandhini123
ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE