Respuesta :

ntowry

Answer:

3. NO

4. NO

7. c = 17.2

8. x = 7

Step-by-step explanation:

Answer:

1) [tex]9 < x < 31[/tex]

2) [tex]10 < x < 54[/tex]

3) Not a triangle

4) This is a triangle

5) [tex]6\sqrt{2}[/tex]

6) [tex]4\sqrt{6}[/tex]

7) [tex]x=\sqrt{296} \\x=2\sqrt{74} \\x=17.2047[/tex]

8) [tex]x=7[/tex]

9) Obtuse

10) Obtuse

Step-by-step explanation:

1) This one is a bit difficult to explain without a picture, but the third side needs to be longer than the difference of the 2 sides, and shorter than the sum of the 2 sides.

[tex]20+11=31\\20-11=9[/tex]

The third side must be shorter than 31 and longer than 9.

[tex]9 < x < 31[/tex]

2) Same thing here.

[tex]32+22=54\\32-22=10\\10 <  x < 54[/tex]

3) Use the same method as the first 2 questions.

[tex]10 + 5 = 15\\10 - 5 = 5[/tex]

15 is greater than 5, but not less than 15. Not a triangle.

4) Same thing again.

[tex]12+2.6=14.6\\12-2.6=9.4[/tex]

12 is greater than 9.4 and less than 14.6. This is a triangle.

5) Split 72 into its prime factors, rewrite any pairs in exponent form, and apply [tex]\sqrt{x^2} =x[/tex]

[tex]\sqrt{72} \\\sqrt{2*2*2*3*3}\\\sqrt{(2*2)*(3*3)*2} \\\sqrt{2^2*3^2*2} \\(2*3)\sqrt{2} \\6\sqrt{2}[/tex]

6) Same thing once again.

[tex]\sqrt{96}\\\sqrt{2*2*2*2*2*3}\\\sqrt{(2*2)*(2*2)*2*3}\\\sqrt{2^2*2^2*2*3} \\(2*2)\sqrt{2*3}  \\4\sqrt{6}[/tex]

7) Use the pythagorean theorem ([tex]a^2+b^2=c^2[/tex])

[tex]14^2+10^2=x^2\\196+100=x^2\\x^2=296\\x=\sqrt{296} ,-\sqrt{296}[/tex]

Distances cant be negative, so [tex]x=\sqrt{296} \\x=2\sqrt{74}[/tex]

8) The time to repeat the same method has come.

[tex]5^2+x^2=\sqrt{74} ^2\\x^2+25=74\\x^2=49\\x=7,-7[/tex]

Distances cant be negative, so [tex]x=7[/tex]

9) Check distances with the pythagorean theorem.

[tex]12^2+9^2=17^2\\144+81=289\\225\neq289[/tex]

The third side is too long to be a right triangle, so this triangle is obtuse.

10) Repeat the previous method once more.

[tex]6^2+(2\sqrt{55} )^2=17^2\\36+220=289\\256\neq 289[/tex]

Third side is too long, triangle is obtuse.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE