A bridge in the shape of an arch connects two cities separated by a river. The two ends of the bridge are located at (โ€“7, โ€“13) and (7, โ€“13), and the center of the arch on the bridge is located at (0, 0). Find the equation of the arch of the bridge.

Respuesta :

Answer:

[tex]y=-\dfrac{13}{49}x^2[/tex]

Step-by-step explanation:

The shape of an arch corresponds to a parabola.

the general equation for a parabola is:

[tex]y=ax^2+bx+c[/tex]

we're given three coordinates: (-7,-13),(7,-13) and (0,0)

so we can plug these values in the general equation to make 3 separate equations:

(x,y) = (-7,-13)

[tex]-13=a(-7)^2+b(-7)+c[/tex]

[tex]49a-7b+c=-13[/tex]

(x,y) = (7,-13)

[tex]-13=a(7)^2+b(7)+c[/tex]

[tex]49a+7b+c=-13[/tex]

(x,y) = (0,0)

[tex]0=a(0)^2+b(7)+c[/tex]

[tex]c=0[/tex]

so we have three equations. and we can solve them simultaneously to find the values of a,b, and c.

we've already found c = 0, let's use substitute it to other equations.

[tex]49a-7b+c=-13\quad\Rightarrow\quad49a-7b=-13[/tex]

[tex]49a+7b+c=-13\quad\Rightarrow\quad49a+7b=-13[/tex]

we can solve these two equation using the elimination method, by simply adding the two equations

[tex]\quad\quad49a-7b=-13\\+\quad49a+7b=-13[/tex]

------------------------------

[tex]\quad\quad 98a=-26[/tex]

[tex]\quad\quad a=-\dfrac{13}{49}[/tex]

Now we can plug this value of a in any of the two equations.

[tex]49a-7b=-13[/tex]

[tex]49\left(-\dfrac{13}{49}\right)-7b=-13[/tex]

[tex]-13-7b=-13[/tex]

[tex]-7b=0[/tex]

[tex]b=0[/tex]

We have the values of a,b, and c. We can plug them in the general equation to find the equation of the arch.

[tex]y=\left(-\dfrac{13}{49}\right)x^2+0x+0[/tex]

[tex]y=-\dfrac{13}{49}x^2[/tex]

[tex]49y=-13x^2[/tex]

This our equation of the arch!

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE