Answer:
A)ω₂= 4.42 rad/s
B)I=415.82 kg.m²
C)I₁ = 919.48 kg.m²
D)I₂ = 294.91 kg.m²
Explanation:
Given that
M= 87.1 kg
r= 3.09 m
m = 96.3 kg
ω ₁= 2.5 rad/s (when student at rim )
There is no any external torque that is why the total angular momentum of the system will be conserve.
The moment of inertia of circular platform about center about its center
[tex]I=\dfrac{MR^2}{2}\ kg.m^2[/tex]
[tex]I=\dfrac{87.1\times 3.09^2}{2}\ kg.m^2[/tex]
I=415.82 kg.m²
Moment of inertia of the student
[tex]I_1={mr^2}\ kg.m^2[/tex]
[tex]I_1=96.3\times 3.09^2\ kg.m^2[/tex]
I₁ = 919.48 kg.m²
[tex]I_2={mr^2}\ kg.m^2[/tex]
[tex]I_2=96.3\times 1.75^2\ kg.m^2[/tex]
I₂ = 294.91 kg.m²
[tex](I+I_1)\omega_1=(I+I_2)\omega_2[/tex]
[tex]\omega_2=\dfrac{I+I_1}{I+I_2}\times \omega_1[/tex]
[tex]\omega_2=\dfrac{514.82+919.48}{514.82+294.91}\times 2.5[/tex]
A)ω₂= 4.42 rad/s
B)I=415.82 kg.m²
C)I₁ = 919.48 kg.m²
D)I₂ = 294.91 kg.m²