Respuesta :

Answer:

Option B) [tex]6^2[/tex] is correct.

That is in the given equation [tex]x-12\sqrt{x}+36=0[/tex] the value of x is  [tex]6^2[/tex]

ie., [tex]x=6^2[/tex]

Step-by-step explanation:

The given equation is [tex]x-12\sqrt{x}+36=0[/tex]

To find the value of x in the given equation :

[tex]x-12\sqrt{x}+36=0[/tex]

Rewritting the above equation as below :

[tex]\sqrt{x}^2-2(\sqrt{x})(6)+6^2=0[/tex]

Which is in the form of [tex](a-b)^2=a^2-2ab+b^2[/tex]

Here [tex]a=\sqrt{x}[/tex] and b=6

Therefore it can be written as

[tex](\sqrt{x}-6)^2=0[/tex]

[tex]\sqrt{x}-6=0[/tex]

[tex]\sqrt{x}=6[/tex]

Squaring on both sides we get

[tex](\sqrt{x})^2=6^2[/tex]

[tex]x=6^2[/tex]

Therefore in the given equation [tex]x-12\sqrt{x}+36=0[/tex] the value of x is [tex]6^2[/tex]

Therefore Option B) [tex]6^2[/tex] is correct.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE