Respuesta :

Rationalizing the denominator of [tex]\frac{\sqrt[3]{2z} }{\sqrt[3]{z^2} }[/tex]

we get [tex]\frac{\sqrt[3]{2} }{\sqrt[3]{z} }[/tex].

Option D is correct.

Step-by-step explanation:

We need to rationalize the denominator: [tex]\frac{\sqrt[3]{2z} }{\sqrt[3]{z^2} }[/tex]

Solving:

[tex]\frac{\sqrt[3]{2z} }{\sqrt[3]{z^2} }[/tex]

using Radical rule: [tex]\frac{\sqrt[n]{x}}{\sqrt[n]{y}}=\sqrt[n]{\frac{x}{y} }[/tex]

[tex]=\sqrt[3]{\frac{2z}{z^2}}[/tex]

[tex]=\sqrt[3]{\frac{2}{z^{2-1}}}[/tex]

[tex]=\sqrt[3]{\frac{2}{z^{1}}}[/tex]

[tex]=\sqrt[3]{\frac{2}{z}}[/tex]

We can write it as:

[tex]\frac{\sqrt[3]{2} }{\sqrt[3]{z} }[/tex]

So, rationalizing the denominator of [tex]\frac{\sqrt[3]{2z} }{\sqrt[3]{z^2} }[/tex]

we get [tex]\frac{\sqrt[3]{2} }{\sqrt[3]{z} }[/tex].

Option D is correct.

Keywords: Radical Expression

Learn more about Radical Expression at:

  • brainly.com/question/7153188
  • brainly.com/question/10534381

#learnwithBrainly

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE