Answer:
Approximately [tex]\rm 2.0\; V[/tex].
Approximately [tex]\rm 30 \; mA[/tex]. (assumption: the LED here is an Ohmic resistor.)
Explanation:
The two resistors here [tex]R_1= 10\; \Omega[/tex] and [tex]R_2= 100\; \Omega[/tex] are connected in parallel. Their effective resistance would be equal to
[tex]\displaystyle \frac{1}{\dfrac{1}{R_1} + \dfrac{1}{R_2}} = \frac{1}{\dfrac{1}{10} + \dfrac{1}{100}} = \frac{10}{11} \; \Omega[/tex].
The current in a serial circuit is supposed to be the same everywhere. In this case, the current through the LED should be [tex]20\; \rm mA = 0.020\; \rm A[/tex]. That should also be the current through the effective [tex]\displaystyle \rm \frac{10}{11} \; \Omega[/tex] resistor. Make sure all values are in standard units. The voltage drop across that resistor would be
[tex]V = I \cdot R = 0.020 \times \dfrac{10}{11} \approx 0.182\; \rm V[/tex].
The voltage drop across the entire circuit would equal to
In this case, that value would be equal to [tex]1.83 + 0.182 \approx 2.0\; \rm V[/tex]. That's the voltage that needs to be supplied to the circuit to achieve a current of [tex]20\; \rm mA[/tex] through the LED.
Assuming that the LED is an Ohmic resistor. In other words, assume that its resistance is the same for all currents. Calculate its resistance:
[tex]\displaystyle R(\text{LED}) = \frac{V(\text{LED})}{I(\text{LED})}= \frac{1.83}{0.020} \approx 91.5\; \Omega[/tex].
The resistance of a serial circuit is equal to the resistance of its parts. In this case,
[tex]\displaystyle R = R(\text{LED}) + R(\text{Resistors}) = 91.5 + \frac{10}{11} \approx 100\; \Omega[/tex].
Again, the current in a serial circuit is the same in all appliances.
[tex]\displaystyle I = \frac{V}{R} = \frac{3}{100} \approx 0.030\; \rm A = 30\; mA[/tex].