Answer:
Mass of water 2.9g
Explanation:
Ice
[tex]m_{ice}=100g[/tex]
[tex]c_{ice}=2J/g.K[/tex]
[tex]T_{ice,initial}=-10\°C[/tex]
[tex]T_{ice,final}=T_{equilibrium}=-5\°C[/tex]
Water
[tex]c_{water}=4J/g.K[/tex]
[tex]T_{water,initial}=10\°C[/tex]
[tex]T_{water,final}=0\°C[/tex]
[tex]T_{equilibrium}=-5\°C[/tex]
[tex]l_{water}=300J/g[/tex]
[tex]m_{water}=?g[/tex]
Step 1: Determine heat gained by ice
[tex]Q_{ice}=m_{ice}c_{ice}(T_{ice,final}-T_{ice,initial})[/tex]
[tex]Q_{ice}=100*2*(-5--10)[/tex]
[tex]Q_{ice}=1000J[/tex]
Step 2; Determine heat lost by water
[tex]Q_{water}=m_{water}c_{water}(T_{water,initial}-T_{water,final})+m_{water}l_{water}[/tex]
[tex]Q_{water}=m_{water}*4*(10-0)+m_{water}*300[/tex]
[tex]Q_{water}=40m_{water}+300m_{water}[/tex]
[tex]Q_{water}=340m_{water}[/tex]
Step 3: Heat gained by ice is equivalent to heat lost by water
[tex]Q_{ice}=Q_{water}[/tex]
[tex]1000=340m_{water}[/tex]
[tex]m_{water}=2.9g[/tex]