Water leaking onto a floor forms a circular pool. The radius of the pool increases at a rate of 8 cm/min. How fast is the area of the pool increasing when the radius is 13 cm?

Respuesta :

Answer:

The area of the pool increasing at the rate of 653.12[tex]cm^2/min[/tex]  when the radius is 13 cm

Step-by-step explanation:

Given:

radius of the pool increases at a rate of 8 cm/min

To Find:

How fast is the area of the pool increasing when the radius is 13 cm ?

Solution:

we are given with the circular pool

hence the area of the circular pool =

A =[tex]\pi r^2[/tex]-----------------------------(1)

The area of the pool os increasing at the rate of 8 cm/min, meaning that the arae of the pool is changing with respect to time t

so differentiating eq (1)  with respect to t , we have

[tex]\frac{d A}{d t}=\pi \cdot 2 r \cdot \frac{d r}{d t}[/tex]

we have to find  [tex]\frac{d A}{d t}[/tex] with [tex]\frac{d r}{d t}[/tex] = 8 cm/min and  r =  13cm

substituting the values

[tex]\frac{d A}{d t}=\pi \cdot 2 (13) \cdot 8[/tex]

[tex]\frac{d A}{d t}=\pi \cdot 26 \cdot 8[/tex]

[tex]\frac{d A}{d t}=\pi \cdot 208[/tex]

[tex]\frac{d A}{d t}= 208 \pi[/tex]

[tex]\frac{d A}{d t}=653.12[/tex]

Answer:

208pi cm^2/min

Step-by-step explanation:Take the derivative of the formula for Area and substitute the values

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE