Convert from rectangular to polar coordinates:Note: Choose r and θ such that r is non-negative and 0 ≤ θ < 2πa. (6,0)b. (9,9/√3)c. (-2,2)d. (-√3,1)

Respuesta :

Answer:

The polar coordinates are as follow:

a. (6,2π)

b. (18, π/3)

c. (2√2 , 3π/4)

d. (2, 5π /6)

Step-by-step explanation:

To convert the rectangular coordinates into polar coordinates, we need to calculate r, θ .

To calculate r, we use Pythagorean theorem:

r = [tex]\sqrt{ x^{2} +y^{2} }[/tex] ---- (1)

To calculate the θ, first we will find out the θ '  using the inverse of cosine as it is easy to calculate.

So,    θ '  = cos ⁻¹  (x/r)

If  y  ≥  0  then  θ  =  ∅

If  y  <  0  then  θ  =  2 π  −  ∅

For a. (6,0)

Sol:

Using the formula in equation (1). we get the value of r as:

r = [tex]\sqrt{6^{2} + 0^{2}  }[/tex]

r = 6

And ∅  = cos ⁻¹  (x/r)

∅ = cos ⁻¹  (6/6)

∅  =cos ⁻¹   (1) = 2π

As If  y  ≥  0  then  θ  =  ∅

So ∅ = 2π

The polar coordinates are (6,2π)

For a. (9,9/[tex]\sqrt{3}[/tex])

Sol:

r = 9 + 3(3) = 18

and ∅  = cos ⁻¹  (x/r)

∅ = cos ⁻¹  (9/18)

∅ = cos ⁻¹   (1/2) = π/3

As  If  y  ≥  0  then  θ  =  ∅

then θ  = π/3

The polar coordinates are (18, π/3)

For (-2,2)

Sol:

r =√( (-2)²+(2)² )

r = 2 √2

and ∅  = cos ⁻¹  (x/r)

∅ = cos ⁻¹  (-2/ 2 √2)

∅ = 3π/4

As  If  y  ≥  0  then  θ  =  ∅

then   θ  = 3π/4

The polar coordinates are (2√2 , 3π/4)

For (-√3, 1)

Sol:

r = √ ((-√3)² + 1²)

r = 2

and ∅  = cos ⁻¹  (x/r)

∅  = cos ⁻¹ ( -√3/2)

∅  = 5π /6

As  If  y  ≥  0  then  θ  =  ∅

So  θ  = 5π /6

The polar coordinates are (2, 5π /6)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE