Answer:
[tex]M_{per}= 52.86 [/tex]
[tex]W_{per}=47.14 [/tex]
Explanation:
First mixture:
40 wt% methanol - 60 wt% water 200 kg
[tex]m_{met1}=200 kg * 0.4= 80 kg[/tex]
[tex]m_{wat1}=200 kg * 0.6= 120 kg[/tex]
Second mixture:
70 wt% methanol - 30 wt% water 150 kg
[tex]m_{met2}=150 kg * 0.7= 105 kg[/tex]
[tex]m_{wat2}=150 kg * 0.3= 45 kg[/tex]
Final mixture:
[tex]m_{metF=80 kg + 105 kg= 185 kg[/tex]
[tex]m_{watF}=120 kg + 45 = 165 kg[/tex]
[tex]M_{per}=\frac{185 kg}{185 kg + 165 kg}*100= 52.86 [/tex]
[tex]W_{per}=\frac{165 kg}{185 kg + 165 kg}*100=47.14[/tex]
If, the compositions are constant, the only variables are the mass of each mixture used in the final one, so there can be only one independent balance.