The graph of a function, ƒ( x), is plotted on the coordinate plane. Select two of the following functions that would move the graph of the function to the right on the coordinate plane.
A. ƒ( x + 2) – 7
B. ƒ( x) – 3
C. ƒ( x – 3) + 1
D. ƒ( x) + 4
F. ƒ( x + 6)
G. ƒ( x – 5)

Respuesta :

Answer:

The following functions would move the graph of the function to the right on the coordinate plane.

C) [tex]f(x-3)+1[/tex]

G) [tex]f(x-5)[/tex]

Step-by-step explanation:

We need to check for those functions which shows a horizontal shift of graph to the right.

Translation Rules:

Horizontal shift:

[tex]f(x)\rightarrow f(x+c)[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the left.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the right.

Vertical shift:

[tex]f(x)\rightarrow f(x)+c[/tex]

If [tex]c>0[/tex] the function shifts [tex]c[/tex] units to the up.

If [tex]c<0[/tex] the function shifts [tex]c[/tex] units to the down.

Applying rules to identify the translation occuring in each of the given functions.

A) [tex]f(x+2)-7[/tex]

Translation: [tex]f(x)\rightarrow f(x+2)-7[/tex]

The translation shows a shift of 2 units to the left and 7 units down.

B) [tex]f(x)-3[/tex]

Translation: [tex]f(x)\rightarrow f(x)-3[/tex]

The translation shows a shift of 3 units down.

C) [tex]f(x-3)+1[/tex]

Translation: [tex]f(x)\rightarrow f(x-3)+1[/tex]

The translation shows a shift of 3 units to the right and 1 units up.

D) [tex]f(x)+4[/tex]

Translation: [tex]f(x)\rightarrow f(x)+4[/tex]

The translation shows a shift of 4 units up.

F) [tex]f(x+6)[/tex]

Translation: [tex]f(x)\rightarrow f(x+6)[/tex]

The translation shows a shift of 6 units to the left.

G) [tex]f(x-5)[/tex]

Translation: [tex]f(x)\rightarrow f(x-5)[/tex]

The translation shows a shift of 5 units to the right.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE