contestada

An acetate buffer solution is prepared by combining 50 ml of .20 M acetic acid and 50 ml of .20 M sodium acetate. A 5 ml sample of .10 M naoh is added to the buffer solution. what is the final pH of the solution? pKa of acetic acid is 4.7

Respuesta :

znk

Answer:

[tex]\large \boxed{4.7}[/tex]

Explanation:

The equation for the buffer equilibrium is

HA + H₂O ⇌ H₃O⁺ + A⁻

1. Calculate the composition of the original buffer

[tex]\text{ Initial moles of HA} = \text{50 mL} \times \dfrac{\text{0.20 mmol }}{\text{1 mL}} = \text{10 mmol}\\\\\text{ Initial moles of A}^{-} = \text{50 mL} \times \dfrac{\text{0.20 mol }}{\text{1.00 L}} = \text{10 mmol}[/tex]

So you have 10 mmol of HA and 10 mmol of A⁻ in 100 mL of the buffer.

2. pH after adding NaOH

(a) Find new composition of the buffer

The base reacts with the HA and forms A⁻

[tex]\text{Moles of OH$^{-}$ added} = \text{5 mL } \times \dfrac{\text{0.10 mmol}}{\text{ 1 mL}} = \text{0.50 mmol}[/tex]

                  HA + H₂O ⇌     H₃O⁺ + A⁻

I/mmol:     10                                   10

C/mmol:     -0.5                               +0.5

E/mmol:       9.5                               10.5

(b) Find the new pH  

[tex]\begin{array}{rcl}\text{pH} & = & \text{pK}_{\text{a}} + \log \left(\dfrac{[\text{A}^{-}]}{\text{[HA]}}\right )\\\\& = & 4.7 +\log \left(\dfrac{10.5}{9.5}\right )\\\\& = & 4.7 + \log1.11 \\& = & 4.7 +0.043\\& = & \mathbf{4.7}\\\end{array}\\\text{The new pH is $\large \boxed{\textbf{4.7}}$}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE