Answer:
θ =28.07⁰
Explanation:
when van moves around an unbanked curve, horizontal component of normal force is equal to centripetal force
[tex]F_{c}= F_{n} sin\theta[/tex]
[tex]F_{n}sin\theta= \frac{mv^{2} }{r}[/tex]---(1)
There is no motion in vertical direction, so vertical component of normal force is balanced with weight of block i.e.
[tex]F_{n}cos\theta= mg[/tex]----(2)
divide (1) and (2)
[tex]\frac{F_{n}sin\theta}{F_{n}cos\theta} = \frac{\frac{mv^{2} }{r} }{mg}[/tex]
[tex]tan \theta=\frac{v^{2} }{rg}[/tex]
[tex]\theta=tan^{-1} \frac{v^{2} }{rg}[/tex]
v = 28 m/s
r = 150 m
g = 9.8m/[tex]s^{2}[/tex]
θ = 28.07⁰