Respuesta :
Answer:
A. neither even nor odd
Step-by-step explanation:
The equation is that of a parabola whose line of symmetry is x=-5. Even functions are symmetrical about the line x=0, so this is not an even function. It has terms of even degree, so is not an odd function.
The function is neither even nor odd.
Answer:
Option A - neither even nor odd
Step-by-step explanation:
Given : [tex]f(x)=(x+5)^2[/tex]
To find : Determine whether the function below is an even function, an odd function, both, or neither ?
Solution :
We know that,
1) If f(-x)=f(x) it is an even function.
2) If f(-x)=-f(x) it is a odd function.
[tex]f(x)=(x+5)^2[/tex]
[tex]f(x)=x^2+10x+25[/tex]
Substitute x with -x in the function,
[tex]f(-x)=(-x+5)^2[/tex]
[tex]f(-x)=x^2-10x+25[/tex]
The function does not comply with the definitions.
The function is neither even nor odd.
Therefore, option A is correct.