The nuclei of the 02 molecule are separated by a dis- tance 1.20 X m. The mass of each oxygen atom in the molecule is 2.66 >< 10-26 kg.

(a) Determine the rotational energies of an oxygen molecule in electron volts for the levels corresponding to J = 0, 1, and 2.
(b) The effective force constant k between the atoms in the oxygen molecule is 1 177 N/ m. Determine the vibrational energies (in electron volts) corresponding to v = 0, 1, and 2.

Respuesta :

Answer

given,

distance between the nuclei of an O₂ molecule = 1.20 x 10⁻¹⁰ m

mass of oxygen atom = 2.66 x 10⁻²⁶ Kg

the reduced mass of O₂ molecule =

    [tex]\mu=\dfrac{m_1m_2}{m_1+m_2}[/tex]

    [tex]\mu=\dfrac{m_0 m_0}{m_0+m_0}[/tex]

    [tex]\mu=\dfrac{m_0}{2}[/tex]

    [tex]\mu=\dfrac{2.66 \times 10^{-26}}{2}[/tex]

    [tex]\mu=1.33 \times 10^{-26}[/tex]

moment of inertia of O₂ molecule

     [tex]I = \mu r^2[/tex]

     [tex]I = 1.33 \times 10^{-26} \times (1.2\times 10^{-10})^2[/tex]

            I = 1.9152 x 10⁻⁴⁶ kg.m²

a) Rotational energy  of oxygen molecule

     [tex]E_j = \dfrac{h^2}{2l}j(j+1)[/tex]

       J = 0

     [tex]E_j =0[/tex]

       J = 1

     [tex]E_1= \dfrac{h^2}{2l}(1)(1+1)[/tex]

     [tex]E_1= \dfrac{h^2}{l}[/tex]

     [tex]E_1= \dfrac{(1.055 \times 10^{-34})^2}{1.9152\times 10^{-46}}[/tex]

     [tex]E_1=5.81\times 10^{-23}J[/tex]

     [tex]E_1=\dfrac{5.81\times 10^{-23}J}{1.6\times 10^{-19}}[/tex]

            E₁ = 3.63 x 10⁻⁴ eV

    J = 2

     [tex]E_2= \dfrac{h^2}{2l}(2)(2+1)[/tex]

     [tex]E_2= 3\dfrac{h^2}{l}[/tex]

     [tex]E_2= 3\times 3.36 \times 10^{-4}[/tex]

            E₂ = 1.089 x 10⁻³ eV

b) Effective force constant between the molecule

   [tex]E = (v+\dfrac{1}{2})\dfrac{h}{2\pi}\sqrt{\dfrac{k}{m}}[/tex]

for v = 0

   [tex]E =\dfrac{h}{4\pi}\sqrt{\dfrac{k}{m}}[/tex]

   [tex]E =\dfrac{1.055\times 10^{-34}}{4\pi}\sqrt{\dfrac{1177}{2.66\times 10^{-26}}}[/tex]

         E = 1.569 x 10⁻²¹ J

         [tex]E = \dfrac{1.569 \times 10^{-21}}{1.6\times 10^{-19}}[/tex]

         E₀ = 9.8 x 10⁻³ eV

for v = 1

       E₁ = 3 E₀

       E₁ = 3 x 9.8 x 10⁻³

       E₁ = 29.4 x 10⁻³ eV

For v = 2

       E₂ = 5 E₀

       E₂ = 5 x 9.8 x 10⁻³

       E₂ = 49 x 10⁻³ eV

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE