Answer: -3[tex]\sqrt{3}[/tex]
Step-by-step explanation:
-4[tex]\sqrt{12}[/tex] + [tex]\sqrt{75}[/tex]
[tex]\sqrt{12}[/tex] can be written as [tex]\sqrt{4}[/tex] x [tex]\sqrt{3}[/tex]
which is the same as 2[tex]\sqrt{3}[/tex]
Also , [tex]\sqrt{75}[/tex] can be written as [tex]\sqrt{25}[/tex] x[tex]\sqrt{3}[/tex] , which is the same as 5[tex]\sqrt{3}[/tex]
Substituting into the main question , we have
-4 (2[tex]\sqrt{3}[/tex] ) + 5[tex]\sqrt{3}[/tex]
= -8[tex]\sqrt{3}[/tex] + 5[tex]\sqrt{3}[/tex]
= -3[tex]\sqrt{3}[/tex]