Respuesta :
Answer:
B.a vertical shift of 9 units up
Step-by-step explanation:
Given [tex]f(x) = 4x-2\\g(x) = 4x+7[/tex]
[tex]g (x) = f (x) + k[/tex]
It means shifting [tex]f (x)\ k[/tex] unit vertically.
Now, we will find the value of [tex]k[/tex] for the given function
[tex]g(x) = 4x+7\\\\add\ 2\ and\ subtract\ 2\\\\g(x) = 4x+7+2-2\\g(x) = 4x-2+9\\\\We\ have\ f(x)=4x-2\\\So,\ g(x)=f(x)+9[/tex]
[tex]k=9[/tex]
Hence, vertical shift of 9 units.
Answer:
C. a horizontal shift of 9 units left
Step-by-step explanation:
Look at this helpful chart:
Vertical Translations
translation up k units: g(x) = f(x) + k, where k > 0
translation down k units: g(x) = f(x) – k, where k > 0
Horizontal Translations
translation left k units: g(x) = f(x + k), where k > 0
translation right k units: g(x) = f(x – k), where k > 0
The change happening in Martina's graph is therefore a horizontal translation to the left.