To develop this problem we will proceed to convert all units previously given to the international system for which we have to:
[tex]140 lb = 63.5 kg \rightarrow 63.5kg (9.8m/s) =622.3 N[/tex]
[tex]120 lb = 54.4 kg \rightarrow 54.4kg (9.8m/s)= 533 N[/tex]
[tex]170 lb = 77.1 kg \rightarrow 77.1 kg (9.8m/s) =756 N[/tex]
PART A ) From the given values the minimum acceleration will be given for 120Lb and maximum acceleration when 170Lb is reached therefore:
[tex]F = 756 - 622.3[/tex]
[tex]F = 133.7N[/tex]
Through the Newtonian relationship of the Force we have to:
[tex]F= ma[/tex]
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{133.7}{63.5}[/tex]
[tex]a = 2.1m/s^2[/tex]
PART B) For the maximum magnitude of the acceleration downward we have that:
[tex]F = 622.3 - 533[/tex]
[tex]F = 89.3N[/tex]
Through the Newtonian relationship of the Force we have to:
[tex]F= ma[/tex]
[tex]a = \frac{F}{m}[/tex]
[tex]a = \frac{89.3}{63.5}[/tex]
[tex]a = 2.1m/s^2[/tex]
[tex]a = 1.04 m/s^2[/tex]