To solve this problem it is necessary to apply the concepts related to density as a function of mass volume
Density can be expressed mathematically as:
[tex]\rho = \frac{m}{V}[/tex]
Where,
m = mass
V= Volume
Our values are given as,
[tex]\rho = 0.99742g/mL[/tex]
m = 10.4532g
1) Then the value of the Volume is,
[tex]\rho = \frac{m}{V}[/tex]
[tex]0.99742 = \frac{10.4532}{V}[/tex]
[tex]V = \frac{10.4532}{0.99742}[/tex]
[tex]V = 10.4802mL[/tex]
2) The error can be calculated from the calculated value and the delivered value,
[tex]\%error = \frac{v_c-v_d}{v_d}*100[/tex]
Where,
[tex]v_c =[/tex]Calculated value
[tex]v_d =[/tex]Delivered value
Replacing with our values we have then:
[tex]\%error = |\frac{10.4802-10.5}{10.5}|*100[/tex]
[tex]\%error = 0.18\%[/tex]