if f(x)= 3x^2-9x-20, find the value of f(5) using synthetic division. this means, what is the remainder
a. 10
b. 15
c. -7
d. 0

Respuesta :

Answer:

10

Step-by-step explanation:

Just plugging in!

So you could substitute the 5 into [tex]3x^2-9x-20 to[/tex] find the remainder of [tex]\frac{3x^2-9x-20}{x-5}[/tex].

[tex]3(5)^2-9(5)-20[/tex]

[tex]3(25)-9(5)-20[/tex] (exponents first since there are no grouping symbols)

[tex]75-45-20[/tex] (multiplication/division after exponents)

[tex]30-20[/tex] (addition/subtraction after multiplication/division)

[tex]10[/tex]

Synthetic division (the requested route):

So when we do the above division using synthetic division we should get the same thing for the remainder as the above evaluation.

5 |  3       -9         -20

  |           15          30

   -----------------------------

     3        6           10

The remainder is 10, so f(5)=10.

Answer:

[tex]f(5)=10[/tex]

Step-by-step explanation:

Step 1:  Solve f(5)

Synthetic Division

[tex]\begin{array}{rrrr}\multicolumn{1}{r|}{5} & {3} & -9 & -20 \\\cline{2-4} & & 15& 30\\\cline{2-4} & 3 & 6 & \multicolum{|} 10\end{array}[/tex]

Answer:  [tex]f(5)=10[/tex]

Substitution Method

[tex]f(5)=3x^2-9x-20\\f(5)=3(5)^2-9(5)-20\\f(5)=3(25)-45-20\\f(5)=75 - 45-20\\[/tex]

[tex]f(5)=10[/tex]

Answer: [tex]f(5)=10[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE