Answer:
[tex]x'=134.999983\ m[/tex]
[tex]y'=y=30\ m[/tex]
[tex]z'=z=55\ m[/tex]
Explanation:
Given:
- time, [tex]t=9\times 10^{-4}\ s[/tex]
- x coordinates of a particle, [tex]x=135\ m[/tex]
- y coordinates of a particle, [tex]y=30\ m[/tex]
- z coordinates of a particle, [tex]x=55\ m[/tex]
- Relative Speed of frame of reference S' in the +x direction, [tex]v_x=1.5\times 10^{5} m.s^{-1}[/tex]
- Since the speed of the frame S' is comparable to the speed of light in vacuum therefore the observer from S' frame will observe a contracted length of the dimensions in the direction of motion.
Now from the equation of length contraction:
[tex]x'=x\times \sqrt{1-\frac{v_x^2}{c^2} }[/tex]
[tex]x'=135\times \sqrt{1-\frac{(1.5\times 10^{5})^2}{(3\times 10^8)^2} }[/tex]
[tex]x'=134.999983\ m[/tex]
Rest other values will remain unaffected since they are along the axis of motion. So,
[tex]y'=y=30\ m[/tex]
[tex]z'=z=55\ m[/tex]