Respuesta :

Answer:

The perimeter of rhombus WXYZ is [tex]4 \sqrt{13}[/tex]

Step-by-step explanation:

Step 1 :Finding length  of  XY

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= 5

[tex]x_2[/tex]=3

[tex]y_1[/tex]= -1

[tex]y_2[/tex]=2

XY  = [tex]\sqrt{(3-5)^2 +(2 -(-1))^2}[/tex]

XY  = [tex]\sqrt{(3-5)^2 +(2 +1))^2}[/tex]

XY  = [tex]\sqrt{(-2)^2 +(3))^2}[/tex]

XY  = [tex]\sqrt{4 +9}[/tex]

XY  = [tex]\sqrt{(13)}[/tex]

Step 2 :Finding length  of  YZ

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= 3

[tex]x_2[/tex]=5

[tex]y_1[/tex]= 2

[tex]y_2[/tex]=5

YZ  = [tex]\sqrt{(5-3)^2 +(5-2)^2}[/tex]

YZ = [tex]\sqrt{(2)^2 +(3)^2}[/tex]

YZ = [tex]\sqrt{4 +9}[/tex]

YZ  = [tex]\sqrt{(13)}[/tex]

Step 3 : :Finding length  of  ZW

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= 5

[tex]x_2[/tex]=7

[tex]y_1[/tex]= 5

[tex]y_2[/tex]=2

ZW = [tex]\sqrt{(7-5)^2 +(5-2)^2}[/tex]

ZW  = [tex]\sqrt{(2)^2 +(3)^2}[/tex]

ZW  = [tex]\sqrt{4 +9}[/tex]

ZW = [tex]\sqrt{(13)}[/tex]

Step 4 :Finding length  of  WX

Distance formula  = [tex]\sqrt{(x_2-x_1)^2 +(y_2-y_1)^2}[/tex]

here

[tex]x_1[/tex]= 7

[tex]x_2[/tex]=5

[tex]y_1[/tex]= 2

[tex]y_2[/tex]= -1

WX = [tex]\sqrt{(7-5)^2 +((-1)-2)^2}[/tex]

WX  = [tex]\sqrt{(2)^2 +(-3)^2}[/tex]

WX  = [tex]\sqrt{4 +9}[/tex]

WX = [tex]\sqrt{(13)}[/tex]

Step 5: finding the perimeter of the rhombus

Perimeter= 4 X side

=> [tex]4 \times \sqrt{13}[/tex]

=> [tex]4 \sqrt{13}[/tex]

Answer:

C) 4 \sqrt{13}

Step-by-step explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE