Answer:
See explanation
Step-by-step explanation:
Simplify left and right parts separately.
Left part:
[tex]\left(1+\dfrac{1}{\tan^2A}\right)\left(1+\dfrac{1}{\cot ^2A}\right)\\ \\=\left(1+\dfrac{1}{\frac{\sin^2A}{\cos^2A}}\right)\left(1+\dfrac{1}{\frac{\cos^2A}{\sin^2A}}\right)\\ \\=\left(1+\dfrac{\cos^2A}{\sin^2A}\right)\left(1+\dfrac{\sin^2A}{\cos^2A}\right)\\ \\=\dfrac{\sin^2A+\cos^2A}{\sin^2A}\cdot \dfrac{\cos^2A+\sin^A}{\cos^2A}\\ \\=\dfrac{1}{\sin^2A}\cdot \dfrac{1}{\cos^2A}\\ \\=\dfrac{1}{\sin^2A\cos^2A}[/tex]
Right part:
[tex]\dfrac{1}{\sin^2A-\sin^4A}\\ \\=\dfrac{1}{\sin^2A(1-\sin^2A)}\\ \\=\dfrac{1}{\sin^2A\cos^2A}[/tex]
Since simplified left and right parts are the same, then the equality is true.