Respuesta :

Question:

The square of a number decreased by 3 times the number is 28 find all possible values for the number  

Answer:

The possible values of number are 7 and -4

Solution:

Given that the square of a number decreased by 3 times the number is 28

To find: all possible values of number

Let "a" be the unknown number

From given information,

square of a number decreased by 3 times the number = 28

[tex]a^2 - 3a = 28[/tex]

[tex]a^2 - 3a - 28 = 0[/tex]

Let us solve the above quadratic equation

[tex]\text {For a quadratic equation } a x^{2}+b x+c=0, \text { where } a \neq 0[/tex]

[tex]x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}[/tex]

Using the above formula,

[tex]\text { For } a^{2}-3 a-28=0 \text { we have } a=1, b=-3, c=-28[/tex]

[tex]\begin{aligned}&a=\frac{-(-3) \pm \sqrt{(-3)^{2}-4(1)(-28)}}{2 \times 1}\\\\&a=\frac{3 \pm \sqrt{9+112}}{2}\\\\&a=\frac{3 \pm \sqrt{121}}{2}=\frac{3 \pm 11}{2}\\\\&a=\frac{3+11}{2} \text { or } a=\frac{3-11}{2}\\\\&a=7 \text { or } a=-4\end{aligned}[/tex]

Thus the possible values of number are 7 and -4

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE