Respuesta :

Answer:

[tex]4\sqrt{16x^2+1}[/tex]

Step-by-step explanation:

Given [tex]\frac{d}{dx} \int\limits^{4x}_ {1} \, \sqrt{t^2+1}\ dt[/tex]

Using Fundamental Theorem of Calculus

[tex]\frac{d}{dx} \int\limits^{x}_ {a} \, f(t)dt =f(x)\ \ \ for\ any\ constant\ a[/tex]

[tex]\frac{d}{dx} \int\limits^{4x}_ {1} \, \sqrt{t^2+1}\ dt=\frac{d(4x)}{dx}\frac{d}{dx}\int\limits^{4x}}_{1}\, \sqrt{t^2+1}dt[/tex]

Now, [tex]\frac{d(4x)}{dx}=4\ and\ \frac{d}{d(4x)} \int\limits^{4x}_ {1} \, \sqrt{t^2+1}\ dt=\sqrt{(4x^2)+1}[/tex]

Hence plugging these results we get:

[tex]\frac{d}{dx} \int\limits^{4x}_ {1} \, \sqrt{t^2+1}\ dt=4\sqrt{(4x)^2+1}\\\\=4\sqrt{16x^2+1}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE