Respuesta :
Answer:
B. Yes, there are at least 10 people with weak bones and 10 people with strong bones in each group.
Step-by-step explanation:
The Central Limit Theorem estabilishes that, for a random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], a large sample size can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]\frac{\sigma}{\sqrt{n}}[/tex]
The correct answer is:
B. Yes, there are at least 10 people with weak bones and 10 people with strong bones in each group.
As regards using the normal model, the correct answer is D. No, there are not at least 10 people with weak bones and 10 people with strong bones in each group.
Why can't the normal model be used?
In sampling distributions, the normal model can be used if np ≥ 10 and n (1 - p) ≥ 10.
In this case, those with weak bones are:
= 8.5% x 82
= 6.97 people which is less than 10
= 1% x 593
= 5.93 people
We do not have 10 or more people for the sample sizes so the normal model will not be a good fit.
Find out more on the normal model at https://brainly.com/question/15399601.