Respuesta :

Answer:

Smaller t = 2

Larger t = 5

Step-by-step explanation:

Given:

The given function is.

[tex]f(t)=-(t-2)(t-5)[/tex]

Find the zeros of the function.

Solution:

[tex]f(t)=-(t-2)(t-5)[/tex]

Simplify the equation above equation.

[tex]f(t)=-(t^{2}-5t-2t+10)[/tex]

[tex]f(t)=-(t^{2}-7t+10)[/tex]

[tex]f(t)=-t^{2}+7t-10[/tex]

Now, we first find the root of the above equation.

Use quadratic formula with [tex]a=-1, b=7, c=-10[/tex].

[tex]t=\frac{-b\pm \sqrt{(b)^{2}-4ac}}{2a}[/tex]

Put a, b and c value in above equation.

[tex]t=\frac{-7\pm \sqrt{(7)^{2}-4(-1)(-10)}}{2(-1)}[/tex]

[tex]t=\frac{-7\pm \sqrt{49-4\times 10}}{-2}[/tex]

[tex]t=\frac{-7\pm \sqrt{49-40}}{-2}[/tex]

[tex]t=\frac{-7\pm \sqrt{9}}{-2}[/tex]

[tex]t=\frac{-7\pm 3}{-2}[/tex]

For positive sign

[tex]t=\frac{-7 + 3}{-2}[/tex]

[tex]t=\frac{-4}{-2}[/tex]

t = 2

For negative sign

[tex]t=\frac{-7 - 3}{-2}[/tex]

[tex]t=\frac{-10}{-2}[/tex]

t = 5

Put t = 2 in given function.

[tex]f(t)=-(2-2)(2-5)=0[/tex]

Put t = 5 in given function.

[tex]f(t)=-(5-2)(5-5)=0[/tex]

So, the zeros of the function is t = 2 or 5

Therefore, the smaller value of t = 2 and larger value of t = 5.

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE