Respuesta :

Answer:

[tex]x\sqrt{x}[/tex]

Step-by-step explanation:

Given:

The given expression is.

[tex]x^{\frac{3}{2}}[/tex]

Now, we need to write the given expression in radical form.

Solution:

First, we can rewrite the term as:

[tex]x^{3\times \frac{1}{2}[/tex]

Now, we can use this rule of exponents to rewrite the term again:

[tex]x^{a\times b} = (x^{a})^{b}[/tex]

[tex]x^{3\times \frac{1}{2}} = (x^{3})^{\frac{1}{2}}[/tex]

Now, we can use this rule to write the term as an radical:

[tex]x^{\frac{1}{n}} = \sqrt[n]{x}[/tex]

[tex](x^{3})^{\frac{1}{2}} = \sqrt[2]{x^{3}}[/tex]

[tex](x^{3})^{\frac{1}{2}} = x\sqrt{x}[/tex]

Therefore, the redical form of the given expression is [tex]x\sqrt{x}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE