Respuesta :

Answer:

(5,2) and (5,10)

Step-by-step explanation:

we know that

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

we have

[tex]points\ (2,6),(5,y)\\d=5[/tex]

substitute in the formula

[tex]5=\sqrt{(y-6)^{2}+(5-2)^{2}}[/tex]

solve for y

[tex]5=\sqrt{(y-6)^{2}+(3)^{2}}[/tex]

[tex]5=\sqrt{(y-6)^{2}+9}[/tex]

square both sides

[tex]25=(y-6)^{2}+9[/tex]

[tex](y-6)^{2}=25-9[/tex]

[tex](y-6)^{2}=16[/tex]

square root both sides

[tex]y-6=\pm4[/tex]

[tex]y=6\pm4[/tex]

[tex]y=6+4=10[/tex]

[tex]y=6-4=2[/tex]

therefore

The points are

(5,2) and (5,10)

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE