Respuesta :

Answer:

The function which represent the phone value after x years                      f = i [tex](0.37)^{x}[/tex]

Step-by-step explanation:

Given as :

The rate of depreciation of i-phone value each year = r = 63%

The initial value of i-phone = $ i

The final value of i-phone = $ f

The time period for depreciation = x year

Now, According to question

The final value of i-phone = The initial value of i-phone × [tex](1-\dfrac{\textrm rate}{100})^{\textrm time}[/tex]

Or, $ f = $ i × [tex](1-\dfrac{\textrm r}{100})^{\textrm time}[/tex]

Or, $ f = $ i × [tex](1-\dfrac{\textrm 63}{100})^{\textrm x}[/tex]

Or, $ f = $ i × [tex](0.37)^{x}[/tex]

So, The function which represent the phone value after x years =                    f = i [tex](0.37)^{x}[/tex]

Hence, The function which represent the phone value after x years                     f = i [tex](0.37)^{x}[/tex]  Answer

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE