Answer:
The specific heat capacity of quartz is 0.71 J/g°C.
Explanation:
Heat lost by quartz will be equal to heat gained by the water
[tex]-Q_1=Q_2[/tex]
Mass of quartz= [tex]m_1=51.9 g[/tex]
Specific heat capacity of quartz= [tex]c_1=? [/tex]
Initial temperature of the quartz= [tex]T_1=97.8^oC[/tex]
Final temperature = [tex]T_2=T = 19.3^oC[/tex]
[tex]Q_1=m_1c_1\times (T-T_1)[/tex]
Mass of water=[tex]m_2=300.0 g[/tex]
Specific heat capacity of water= [tex]c_2=4.18 J/g^oC [/tex]
Initial temperature of the water = [tex]T_3=17.0 ^oC[/tex]
Final temperature of water = [tex]T_2=T
=19.3^oC[/tex]
[tex]Q_2=m_2c_2\times (T-T_3)[/tex]
[tex]-Q_1=Q_2[/tex]
[tex]-(m_1c_1\times (T-T_1))=m_2c_2\times (T-T_3)[/tex]
On substituting all values:
[tex]-(51.9 gc_1\times (19.3^oC-97.8^oC))=300.0 g\times 4.18 J/g^oC\times (19.3^oC-170^oC)[/tex]
we get:
[tex]c_1 =0.7079 J/g^oC\approx 0.71 J/g^oC[/tex]
The specific heat capacity of quartz is 0.71 J/g°C.