An equation of an ellipse is given. y2 = 1 − 3x2 (a) Find the vertices, foci, and eccentricity of the ellipse. vertex (x, y) = (smaller y-value) vertex (x, y) = (larger y-value) focus (x, y) = (smaller y-value) focus (x, y) = (larger y-value) eccentricity (b) Determine the length of the major axis. Determine the length of the minor axis.

Respuesta :

Answer:

Step-by-step explanation:

Given

[tex]y^2=1-3x^2[/tex]

[tex]3x^2+y^2=1[/tex]

[tex]\frac{x^2}{(\frac{1}{\sqrt{3}})^2}+\frac{y^2}{1}=1[/tex]

therefore it is a vertical ellipse

thus a=1

[tex]b=\frac{1}{\sqrt{3}}[/tex]

eccentricity of Ellipse

[tex]e^2=1-\frac{b^2}{a^2}[/tex]

[tex]e^2=1-\frac{1}{(\sqrt{3})^2}[/tex]

[tex]e^2=1-\frac{1}{3}[/tex]

[tex]e^2=\frac{2}{3}[/tex]

[tex]e=\sqrt{\frac{2}{3}}[/tex]

Focii are [tex](0,ae)[/tex] and [tex](0,-ae)[/tex]

[tex]ae=1\times \sqrt{\frac{2}{3}}[/tex]

thus focii are [tex](0,\sqrt{\frac{2}{3}})[/tex] & [tex](0,-\sqrt{\frac{2}{3}})[/tex]

(b) Length of major axis [tex]=2a=2\times 1[/tex]

length of minor axis[tex]=2b=2\times \sqrt{\frac{2}{3}}=2\cdot \sqrt{\frac{2}{3}}[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE