We wish to give a 90% confidence interval for the mean value of a normally distributed random variable. We obtain a simple random sample of 9 elements from the population on which the variable is defined. The sample has a mean value of 10.2 and a sample standard deviation 1.5. Find the 90% confidence interval for the mean value.

Respuesta :

Answer: [tex](9.27025,\ 11.12975)[/tex]

Step-by-step explanation:

Given : Sample size : n= 9

Degree of freedom = df =n-1 =8

Sample mean : [tex]\overline{x}=10.2[/tex]

sample standard deviation : [tex]s= 1.5[/tex]

Significance level ; [tex]\alpha= 1-0.90=0.10[/tex]

Since population standard deviation is not given , so we use t- test.

Using t-distribution table , we have

Critical value = [tex]t_{\alpha/2, df}=t_{0.05 , 8}=1.8595[/tex]

Confidence interval for the population mean :

[tex]\overline{x}\pm t_{\alpha/2, df}\dfrac{s}{\sqrt{n}}[/tex]

90% confidence interval for the mean value will be :

[tex]10.2\pm (1.8595)\dfrac{1.5}{\sqrt{9}}[/tex]

[tex]10.2\pm (1.8595)\dfrac{1.5}{3}[/tex]

[tex]10.2\pm (1.8595)(0.5)[/tex]

[tex]10.2\pm (0.92975)[/tex]

[tex](10.2-0.92975,\ 10.2+0.92975)[/tex]

[tex](9.27025,\ 11.12975)[/tex]

Hence, the 90% confidence interval for the mean value= [tex](9.27025,\ 11.12975)[/tex]

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE