Find the distance between each pair of points.
6 units
5 units
2 units
4 units
3 units
E(-2, -1) and F(-2, -5)
arrowRight
C(-4, 1) and D(1, 1)
arrowRight
G(3, -5) and H(6, -5)
arrowRight
A (5, 4) and B( 5, -2)
arrowRight

Respuesta :

The distances are:

- E and F: 4 units.

- C and D: 5 units.

- G and H: 3 units.

- A and B: 6 units.

Why?

We can find the distance between each pair of points using the following formula:

[tex]d(P_1,P_2)=\sqrt{(x_2-x_1)^{2}+(y_2-y_1)^{2}}[/tex]

So, calculating we have:

- E(-2, -1) and F(-2, -5):

[tex]d(E,F)=\sqrt{(-2-(-2))^{2}+(-5-(-1))^{2}}\\\\d(E,F)=\sqrt{0+(-5+1)^{2}}=\sqrt{0+(-4)^{2}}=\sqrt{16}=4units[/tex]

- C(-4, 1) and D(1, 1):

[tex]d(C,D)=\sqrt{(1-(-4))^{2}+(1-(1))^{2}}\\\\d(C,D)=\sqrt{(5)^{2}+0^{2}}=\sqrt{25+0}=\sqrt{25}=5units[/tex]

- G(3, -5) and H(6, -5):

[tex]d(G,H)=\sqrt{(6-(3))^{2}+(-5-(-5))^{2}}\\\\d(G,H)=\sqrt{(3)^{2}+0^{2}}=\sqrt{9+0}=\sqrt{9}=3units[/tex]

- A(5, 4) and B( 5, -2):

[tex]d(A,B)=\sqrt{(5-(5))^{2}+(-2-(4))^{2}}\\\\d(A,B)=\sqrt{0+(-6)^{2}}=\sqrt{0+36}=\sqrt{36}=6units[/tex]

Have a nice day!

Answer:

G(3, -5) and H(6, -5) ------>3 units

arrowRight

E(-2, -1) and F(-2, -5)------->4 units

arrowRight

A (5, 4) and B( 5, -2)------->6 units

arrowRight

C(-4, 1) and D(1, 1)---------->5 units

arrowRight

Explanation:

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE