The function that represents the number of E.coli bacteria cells per 100 mL of water as t years elapses, and is missing in the question, is:
[tex]A(t)=136(1.123)^{4t}[/tex]
Answer:
Option A. 59%
Explanation:
The base, 1.123, represents the multiplicative constant rate of change of the function, so you just must substitute 1 for t in the power part of the function::
Then, the multiplicative rate of change is 1.590, which means that every year the number of E.coli bacteria cells per 100 mL of water increases by a factor of 1.590, and that is 1.59 - 1 = 0.590 or 59% increase.
You can calculate it also using two consecutive values for t. For instance, use t =1 and t = 1
[tex]t=1\\\\ A(1)=136(1.123)^4\\\\\\t=2\\ \\ \\A(2)=136(1.123)^8\\ \\ \\A(2)/A(1)=1.123^8/1.1123^4=1.123^4=1.590[/tex]