Respuesta :

Answer:

X=[tex]8\sqrt{2}[/tex]                   Y=[tex]7\sqrt{2}[/tex]

Step-by-step explanation:

The first one is 45-45-90 right angled isosceles triangle.

The length of the hypotenuse ie.X can be found with the help of Pythagoras Theorem.

[tex]a^{2} + b^{2} = X^{2}[/tex]

where a and b are the remaining sides of the triangle,

[tex]8^{2} +8^{2} =X^{2} \\2*8^{2} =X^{2}\\X=8\sqrt{2}[/tex]

X=[tex]8\sqrt{2}[/tex]  

In the second triangle we have to apply trigonometry,

cos θ=[tex]\frac{Length OfAdjacentSide}{LengthOfHypotenuse}[/tex]

cos 30°=[tex]\frac{\sqrt{3} }{2}[/tex]

[tex]\frac{\sqrt{3} }{2}[/tex]=[tex]\frac{Y}{14}[/tex]

Thus, Y=[tex]7\sqrt{2}[/tex]  inches

ACCESS MORE
ACCESS MORE
ACCESS MORE
ACCESS MORE